Tunnel channel formation during the November 1996 jökulhlaup, Skeiðarárjökull, Iceland

Andrew J. RUSSELL,1 Andrew R. GREGORY,1 Andrew R.G. LARGE,1 P. Jay FLEISHER,2 Timothy D. HARRIS3

1School of Geography, Politics and Sociology, Daysh Building, University of Newcastle upon Tyne NE1 7RU, UK
E-mail: Andy.Russell@ncl.ac.uk
2Department of Earth Sciences, SUNY College at Oneonta, NY 13820-4015, USA
3Department of Geography, Staffordshire University, College Road, Stoke-on-Trent, Staffordshire ST4 2DE, UK

ABSTRACT. Despite the ubiquity of tunnel channels and valleys within formerly glaciated areas, their origin remains enigmatic. Few modern analogues exist for event-related subglacial erosion. This paper presents evidence of subglacial meltwater erosion and tunnel channel formation during the November 1996 jökulhlaup, Skeiðarárjökull, Iceland. The jökulhlaup reached a peak discharge of 45 000 to 50 000 m³ s⁻¹, with flood outbursts emanating from multiple outlets across the entire 23 km wide glacier snout. Subsequent retreat of the southeast margin of Skeiðarárjökull has revealed a tunnel channel excavated into the surrounding moraine sediment and ascending 11.5 m over a distance of 160 m from a larger trough to join the apex of an ice-contact fan formed in November 1996. The tunnel channel formed via hydro-mechanical erosion of 14 000 m³ to 24 000 m³ of unconsolidated glacier substrate, evidenced by copious rip-up clasts within the ice-contact fan. Flow reconstruction provides peak discharge estimates of 680 ± 140 m³ s⁻¹. The tunnel channel orientation, oblique to local ice flow direction and within a col, suggests that local jökulhlaup routing was controlled by (a) subglacial topography and (b) the presence of a nearby proglacial lake. We describe the first modern example of tunnel channel formation and illustrate the importance of pressurized subglacial jökulhlaup flow for tunnel channel formation.

INTRODUCTION

Tunnel valleys and tunnel channels are common within the Quaternary landform and sedimentary record of North American and European ice sheet margins (e.g. Wright, 1973; Ehlers and Linke, 1989; Brennand and Shaw, 1994; Clayton and others, 1999; Jørgensen and Sandersen, 2006). Tunnel valley networks and sedimentary fills have been identified within Late Ordovician and Late Paleozoic successions (Ghienne and Deynoux, 1998; Eyles and de Broekert, 2001). Tunnel valleys are elongate depressions cut into unconsolidated sediment or bedrock, with typical lengths of 1–100 km, widths of up to 4 km and depths of up to 400 m. Tunnel valleys can either be filled with sediment or remain unfilled, forming an unfilled channel (O’Cofaigh, 1996; Russell and others, 2003; Jørgensen and Sandersen, 2006; Hooke and Jennings, 2006). Although tunnel valleys are known to have a subglacial genesis, numerous mechanisms have been proposed to explain their origin. Boulton and Hindmarsh (1987) proposed that deforming subglacial sediment would flow towards low-pressure zones around conduits, allowing progressive evacuation of subglacial sediment and tunnel valley generation. Piotrowski (1997) argued that, for glacially-charged aquifers, groundwater flux alone was incapable of instantaneously discharging large meltwater volumes and suggested instead that excess meltwater accumulation at the glacier bed resulted in periodic jökulhlaups, which excavate subglacial sediments to produce tunnel valleys. While large-scale sedimentary structures within some tunnel valley sediment fills indicate time-transgressive formation (Præg, 2003), fluvial excavation remains one of the most frequently proposed hypotheses to explain the origin and characteristics of tunnel valley systems (e.g. Wingfield, 1989, 1990; Ghienne and Deynoux, 1998; Huuse and Lykke-Andersen, 2000; Jørgensen and Sandersen, 2006; Hooke and Jennings, 2006). Tunnel valleys may be modified by numerous processes acting over considerable time spans. Björnsson (1996) for example has highlighted the role of meltwater in excavating a 300 m deep subglacial trough at Breiðamerkurjökull, Iceland, since the Little Ice Age glacier advance. Tunnel channels, by contrast, are thought to be created by bank-full flow conditions (Brennand and Shaw, 1994; Clayton and others, 1999; Beaney, 2002; Cutler and others, 2002; Sjogren and others, 2002; Smith, 2004; Fisher and others, 2005). Tunnel channel systems are commonly tens of kilometres in length orientated towards former ice margins directly into proglacial outwash deposits (Clayton and others, 1999; Cutler and others, 2002; Kozlowski and others, 2005). Many tunnel channels ascend adverse bed topography suggesting that subglacial flow within the channels was pressurized and flowing down a hydraulic gradient controlled by ice-surface elevation (Clayton and others, 1999; Johnson, 1999; Cutler and others, 2002; Hooke and Jennings, 2006; Jørgensen and Sandersen, 2006). In the literature there is considerable debate as to the magnitude and frequency of tunnel channel forming flows. Hypotheses include a sudden or catastrophic origin during glacier outburst floods, or more steady-state conditions associated with progressive headward sapping by deformable bed sediment or seasonal meltwater flows (e.g. Mooers, 1989; Wright, 1973; Hooke and Jennings, 2006). Recent research along the Laurentide Ice Sheet margin suggests periodic glacier outbursts associated with meltwater storage and release behind zones of frozen glacier bed (Clayton and others, 1999; Cutler and others, 2002; Hooke and Jennings, 2006).
Despite the relative abundance of literature concerning Quaternary tunnel channel genesis, there are no examples of tunnel-channel formation within contemporary glacial systems. This gap has commonly been attributed to a lack of appropriate modern conditions for tunnel channel genesis or the inaccessibility of the subglacial environment (Jørgensen and Sandersen, 2006). This paper addresses this lacuna and presents the first modern example of tunnel channel formation during a glacier outburst flood or ‘jökulhlaup’ under well-constrained event magnitude, duration and impact.

Aims

The aims of this paper are: (1) to present new evidence of subglacial meltwater erosion and tunnel channel formation during the November 1996 jökulhlaup, Skeiðarárjökull, Iceland; and (2) from this evidence, determine the controls on tunnel channel routing and morphology.

NOVEMBER 1996 JÖKULHLAUP

A volcanic eruption beneath the Vatnajökull ice cap began on 30 September 1996 (Guðmundsson and others, 1997). Over the following month, 3.8 km3 of meltwater travelled subglacially into the Grímsvötn subglacial lake until it reached a critical level for drainage (Björnsson, 2002). The resulting jökulhlaup began in Skeiðará, the most easterly river draining Skeiðarárjökull (Fig. 1), on the morning of 5 November, and reached a peak discharge of 45–53 \times 103 m3 s$^{-1}$ within 14 hours (Björnsson, 2002; Snorrason and others, 1997, 2002). After its release from Grímsvötn, the jökulhlaup propagated as a high-pressure subglacial flood wave taking 10.5 hours to reach the glacier snout (Roberts and others, 2000; Joðannesson, 2002; Roberts, 2005; Flowers and others, 2004). Floodwater burst from numerous outlets across the entire 23 km wide ice margin (Russell and Knudsen, 1999; Roberts and others, 2002) (Fig. 1). As the jökulhlaup progressed, discharge from the glacier became progressively focussed on major conduit outlets (Roberts and others, 2000; Roberts, 2005; Flowers and others, 2004). Notably, to exit the glacier, floodwaters had to ascend about 300 m to the sandur surface (Björnsson, 1998; Roberts and others, 2002).

Evidence for large-scale erosion of glacier substrate during the November 1996 jökulhlaup takes the form of copious numbers of intraclasts or rip-ups found in en- and proglacial jökulhlaup deposits (Russell and Knudsen, 1999; Roberts and others, 2001; Waller and others, 2001; Russell...
The event-based erosion is also seen in published sediment budget calculations for the proglacial area (Roberts, 2005; Russell and others, 2006). As Grímsvötn subglacial lake acted as a sediment trap for coarse-grained eruption products, the entire solid sediment load of the jökulhlaup downstream of Grímsvötn was solely derived from fluvial erosion of older volcaniclastic, glacial and glaciofluvial sediments (Stefánsdóttir and others, 1999). The estimated total sediment flux during the 1996 jökulhlaup of 1.8×10^8 m3 suggests tunnel channel excavation may have occurred (Roberts, 2005). Although it is known that subglacial erosion took place during the November 1996 jökulhlaup, no knowledge exists of the spatial distribution and geomorphological expression of erosion. It is notable, however, that between 1996 and 2006, the snout of Skeiðarárjökull thinned by about 100 m and retreated by up to 1 km. In particular, ice margin retreat near the Sauðársandur proglacial lake has progressively revealed a subglacial feeder channel to Sauðársandur, one of the November 1996 jökulhlaup outlets (Figs 1 and 2).

METHODS

Fieldwork was undertaken in the Sauðársandur area of Skeiðarársandur in April 1997, March 2004, July 2005 and April 2006 (Fig. 1). The site was surveyed using Differential Global Positioning System (DGPS) allowing construction of a terrain model of the field area (2331 points) and the mapping of flood wash limits and flood channel morphology (165 points). Within-channel surface grain sizes and bedforms were noted at regular intervals to allow characterization of grain and form roughness. Channel cross-sectional areas, water surface slopes and roughness were used to reconstruct peak jökulhlaup discharge within the Sauðársandur tunnel channel and Sauðársandur proglacial lake outflow channels.

SÆLUHU´SAVATN PROGLACIAL LAKE BASIN

The Sauðársandur upper basin was full of water prior to and immediately following the November 1996 jökulhlaup (Figs 2a, 3 and 4). Stranded ice blocks and silt deposits observed in April 1997 indicated that lake levels rose by several metres during the jökulhlaup (Figs 2a and 3). A coarse-grained boulder delta deposited on the eastern margin of the lake indicates subaerial jökulhlaup influx to the basin (Figs 2a and 3). Sedimentary infill of the upper Sauðársandur basin includes a 1–2 m thick unit of sandy climbing ripples capped by laminated silt (Fig. 2b). Palaeocurrent direction is directly away from the former glacier margin (Figs 2b and 4a). Other sedimentary facies include massive sand units containing out-sized cobbles and intraclasts composed of laminated silts. Located within 50 m of the 1996 glacier margin, all of these facies are the product of high sedimentation rates and rapid reworking within a lacustrine environment (Allen, 1982a, b; Ashley and others, 1982). This finding is consistent with subaqueous jökulhlaup efflux into the upper Sauðársandur lake basin (Fig. 4). Jökulhlaup water exited the Sauðársandur basin initially through a number of spillway channels on the western margin of the lake basin, generating a series of cataracts (Figs 3b and 4). Progressive spillway erosion during a later stage of the jökulhlaup accounted for most of the lake outflow.
REVERSE-GRADIENT CHANNEL AND PROGLACIAL OUTWASH FAN

A channel ascends from the lower Sæluhúsaðváttn basin directly to the head of a distinctive proglacial outwash fan deposited by the 1996 jökulhlaup (Figs 4a and b). Post-jökulhlaup observations reveal a broad, low channel-shaped depression excavated into the surrounding moraine sediment rather than into the overlying ice (Figs 5a–c). The channel bottom ascends 11.5 m over a distance of 160 m and has an average reverse gradient of 0.07 (m/m) (Figs 3b, 4a, 4b and 6). The channel bed becomes shallower as it ascends (Fig. 6). Two tributary gullies entering the channel on its western margin represent post-jökulhlaup meltwater reworking during deglaciation of the channel area (Figs 3b, 4 and 6). In order to avoid these post-jökulhlaup channel modification zones, cross-sectional profiles were surveyed between the tributary gullies and the 1996 ice margin (Figs 3b and 6). Bank-full channel cross-sectional areas of between 50 m² and 90 m² were derived from channel widths of 25–40 m respectively (Fig. 6). The channel base has a relatively smooth appearance when compared to adjacent moraine deposits and the channel margins are characterized by clear breaks of slope in the surrounding moraine sediment (Fig. 5b). With depths restricted to 0.7–2.2 m, the main channel is characteristically wide and shallow, and truncates another shallow channel ascending from the lower Sæluhúsaðváttn basin (Figs 4b and 6). A figure for the volume of eroded sediment of 14 000 m³ was derived by extrapolating surveyed cross-sectional areas (90 m²) along the channel length of 160 m. However, a greater channel cross-sectional area (190 m²) within the first 100 m of the channel as it ascends from the lower Sæluhúsaðváttn basin suggests that a total of 24 000 m³ of sediment was eroded (Figs 4b and 6).

The bar pattern of the proglacial outwash fan indicates rapid flow expansion from the former channel portal, with the upper fan surfaces sloping in a radial fashion away from the channel portal (Figs 3a and 4a). The centre of the fan is incised to a depth of 4 m to the pre-jökulhlaup surface (Russell and Knudsen, 2002) (Figs 5a and b). Copious numbers of rip-ups or intraclasts composed of glaciofluvial sediment are found on the fan, which also contains sediment of up to boulder size (Figs 5a and b). Relatively few ice block obstacle marks are found on the fan compared with other 1996 jökulhlaup outwash fans (Russell and Knudsen, 1999, 2002; Fay, 2002). The fan has an estimated volume of 70 000 m³ based on an average thickness of 2 m and an area of 35 000 m².

FLOW RECONSTRUCTION

Peak jökulhlaup discharge was estimated within the Sæluhúsaðvísl proglacial channel using four variants of the slope-area technique. Flows were reconstructed at three proglacial channel cross-sections and a further two cross-sections within a spillway channel exiting the Sæluhúsaðváttn proglacial lake basin (Figs 3a and 6). The proglacial channel cross-sections were inundated solely by jökulhlaup flow.
exiting the Sæluhúsdalur proglacial lake and the main tunnel channel portal to the west of Sæluhúsdalur (Fig. 4a).

Mean flow velocities for each channel cross-section were calculated using three variants of the standard Manning resistance equation as well as an adaptation of the Keulegan equation (Thompson and Campbell, 1979; Russell and others, 1999). The Manning and Keulegan resistance equations required the following input data: (1) the energy gradient or water surface slope; (2) channel hydraulic radius and (3) grain roughness (Chow, 1959; Henderson, 1966; Maizels, 1983). Four methods were used to characterize grain and form roughness in order to identify potential problems of incorporating the channel resistance. Wash limits were located with the help of aerial photographs taken during the jökulhlaup waning stage on 6 November 1996 and surveyed using DGPS. Channel hydraulic radius was calculated from cross-sectional areas and wetted-perimeters derived from surveyed channel cross-sections (Table 1). Channel roughness was characterized by the Darcy-Weisbach friction factor f and Manning’s n. The modified Keulegan equation proposed by Thompson and Campbell (1979), being the least empirical and least site-specific, was used to calculate the friction factor f in the Darcy-Weisbach equation (Church and others, 1990). The Darcy-Weisbach equation was used to obtain mean velocity values:

$$v = \sqrt{\frac{8gsd}{f}}$$ \hspace{1cm} (1)

where s is the slope, d is the flow depth (m), g is the acceleration due to gravity (9.81 m s$^{-2}$) and f is the friction factor calculated using Thompson and Campbell’s 1979 equation:

$$\frac{1}{\sqrt{f}} = \left(1 - \frac{k_s}{10R}\right) \times 2 \log_{10} \left(\frac{12R}{k_s}\right)$$ \hspace{1cm} (2)

where R is the hydraulic radius and k_s is the size of the roughness elements equal to 4.5 times the boulder size D_i. In this case, we calculated k_s as the proportion of the flow depth d occupied by flow resistance elements ΔA:

$$k_s = 4.5 \frac{d}{\Delta A}$$ \hspace{1cm} (3)

The proportion of the flow depth occupied by flow resistance elements was estimated visually. A single f value was calculated for each cross-section. Calculated f values were used to calculate the friction factor f in the Darcy-Weisbach equation.
converted to Manning’s n using an equation presented by Richards (1982):

$$n = \sqrt{\frac{f R^{1.5}}{D g}}$$ \hspace{1cm} (4)

Manning’s n values were calculated from grain size characteristics using the Manning-Limerinos and Manning-Strickler equations (Equations 5 and 6), which required estimates of the D_{84} and D_{90} percentiles of the grain size distribution (Maizels, 1983; Ryder and Church, 1986; Russell, 1994):

$$n = 0.038 D_{90}^{1/6}$$ \hspace{1cm} (5)

$$\frac{d^{1/6}}{n} = \frac{0.113}{1.16 + 2.0 \log (d/D_{84})}$$ \hspace{1cm} (6)

where d is flow depth and D_{84} and D_{90} are the 84th and 90th percentile grain-size values, respectively. D_{84} and D_{90} percentiles were derived for each cross-section from estimates of surface grain sizes. However, n values calculated from grain-size distributions were compared with those derived solely from water surface slope and the hydraulic radius using Jarrett’s equation (Jarrett, 1984):

$$n = 0.32 S^{0.38} R^{-0.16}$$ \hspace{1cm} (7)

where R is the hydraulic radius (m) and S is the energy slope. Mean flow velocities were derived for each proglacial channel cross-section using each of the four variants of the slope-area technique presented above. Peak flood discharges were derived by multiplying mean flow velocities by channel cross-sectional areas.

Average peak jökulhlaup discharge for the Sæluhústálsá was reconstructed as 1560 ± 310 m3 s$^{-1}$ (Table 2). Average peak discharge from the main spillway channel exiting the Sæluhústálsá was reconstructed as 870 ± 170 m3 s$^{-1}$ (Table 2). There is good correspondence of discharge values derived from the various techniques (Table 2). Sensitivity of peak discharge estimates to changes in water surface slope, channel cross-sectional area and grain roughness are presented in Table 3. Slope-area discharge estimates are sensitive to channel cross-sectional area as discharge is the product of resistance-based velocities and cross-sectional areas (Table 3). Although variation of water surface slope and grain roughness has a significant impact on discharge, these parameters can be constrained reliably. The estimated error for each discharge measurement using the slope-area technique is estimated to be ±20%. The difference in average reconstructed discharge between the proglacial and spillway channels (690 m3 s$^{-1}$) exceeds the likely errors at each site.

If peak discharge within the proglacial and spillway channels was synchronous, then peak flow exiting the tunnel channel would be 680 m3 s$^{-1}$ (Table 2). Dominance of proglacial bars and channels emanating from the tunnel channel portal, however, suggest that flows from the tunnel channel peaked later than those exiting the Sæluhústálsá basin (Figs 3a and 4a). The peak discharge of 680 m3 s$^{-1}$ for the tunnel channel should therefore be regarded as a minimum figure.

Average peak flow velocities within the tunnel channel of 8–14 m s$^{-1}$ are derived by dividing peak discharge, calculated from the proglacial hydraulic reconstructions, by the surveyed channel cross-sectional area. This assumes that the tunnel channel was subject to bank-full conditions and that there was no tunnel roof expansion. Observations of the

<table>
<thead>
<tr>
<th>Table 1. Input data for flow reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel cross-section 1</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Cross-sectional area (m2)</td>
</tr>
<tr>
<td>Hydraulic Radius (m)</td>
</tr>
<tr>
<td>Slope (mm$^{-1}$)</td>
</tr>
<tr>
<td>Width (m)</td>
</tr>
<tr>
<td>Average depth (m)</td>
</tr>
<tr>
<td>Grain size D_{84} (m)</td>
</tr>
<tr>
<td>Grain size D_{90} (m)</td>
</tr>
<tr>
<td>% reduction in cross-section area due to roughness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Discharge estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel cross-section 1</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Darcy-Weisbach</td>
</tr>
<tr>
<td>Manning-Limerinos</td>
</tr>
<tr>
<td>Manning-Strickler</td>
</tr>
<tr>
<td>Jarrett</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>Proglacial average</td>
</tr>
<tr>
<td>Spillway average</td>
</tr>
<tr>
<td>Tunnel channel component</td>
</tr>
</tbody>
</table>
outlet in April 1997 indicate that the conduit was mainly sediment-walled, showing little upward expansion into the glacier (Fig. 5a).

DISCUSSION

The case for a tunnel channel feeding the Sæluhúساvísl proglacial outwash fan is supported by: (1) the clear association of the freshly cut channel ascending from the lower Sæluhúsavísl basin and the proglacial outwash fan (Figs 3, 4 and 6); (2) the lack of any major meltwater outlet or proglacial outwash fan in the Sæluhúsavísl area prior to the jökulhlaup as indicated by oblique aerial photos taken in August 1996; (3) repeated ground and aerial observations since 1996 that do not indicate any major meltwater flow from the 1996 ice margin towards the upper Sæluhúsavísl basin capable of generating the channel system (Figs 3a and 4a) and (4) observations of the outlet channel cutting through adjacent moraine deposits in April 1997 (Figs 5a and b). The presence of numerous rip-up clasts on the proglacial fan surface confirms that major subglacial excavation took place at this location during the 1996 jökulhlaup (Figs 5b and c). Estimated volumes of sediment eroded from the tunnel channel account for 20 to 34% of the volume of the proglacial outwash fan, highlighting the importance of subglacial tunnel channel erosion as a source of sediment to the jökulhlaup at this site. Many of the outwash fans draining the eastern side of Skeiðarárjökull are heavily incised by waning stage flows implying rapid and marked reductions in sediment supply (Russell and Knudsen, 2002; Russell and others, 2006).

Although there is evidence of subaqueous jökulhlaup efflux into the upper Sæluhúsavísl basin at an elevation of 110 m, a substantial discharge ascended the flanks of the lower basin through the tunnel channel to exit at an elevation of 120 m (Fig. 3). Aided by subaerial and the aforementioned subaqueous jökulhlaup influx, the level of the Sæluhúsavísl rose from 117 m to 125 m allowing the formation of a delta graded to a lake level of 125 m (Fig. 2a). The temporarily raised proglacial lake levels acted as a hydraulic dam defl ecting subglacial jökulhlaup flow up the western flank of the upper basin to exit the glacier margin at an elevation of 120 m (Figs 3, 4 and 6). Within-flood changes in hydraulic conditions can therefore be seen to have a significant impact on meltwater flow routing and tunnel channel trajectory. In addition, the presence of a smaller truncated tunnel channel ascending from the upper Sæluhúsavísl basin suggests progressive channel evolution, possibly from an anastomosing to a single channel (cf. Brennand and others, 2006). The Sæluhúsavísl tunnel channel and proglacial outwash fan described in this paper show many similarities to those described from Quaternary ice marginal zones (e.g. Clayton and others, 1999; Cutler and others, 2002; Kozłowski and others, 2005; Jørgensen and Sandersen, 2006). Similarities between the Sæluhúsavísl and Quaternary tunnel channel systems include: up-glacier slopes; associated outwash fans displaying rapid downstream fining and apex incision; dissection of end moraines and a characteristic ‘box’ shape (Clayton and others, 1999; Cutler and others, 2002; Kozłowski and others, 2005). Clayton and others (1999) and Cutler and others (2002) attributed channels cut into outwash fan apexes in Wisconsin to erosion during the waning stage of a tunnel-channel flood. Absence of ice-block obstacle marks or kettle-holes on proglacial outwash fans led Cutler and others (2002) to conclude that tunnel discharge had been relatively modest or that they had been covered by deposits of lower lower magnitude flows. Interestingly, 1996 jökulhlaup flows within the Sæluhúsavísl channel were noted to have a modest number of ice blocks when compared to adjacent outlets. Flood flow within sediment-walled tunnel channels will not result in as much ice removal as en- or supraglacial conduits which are subject to vigorous erosion processes during jökulhlaups (Roberts and others, 2001; Roberts, 2005).

Our modern analogue has demonstrated a close relationship between tunnel channel erosion and proglacial outwash deposition. The data presented clearly demonstrate the ability of meltwater, under these conditions, to erode under appropriate local hydraulic gradients and in the presence of erodible glacier substrate. Tunnel channel formation in Iceland takes place beneath temperate glacier ice in the absence of permafrost. The November 1996 jökulhlaup had a sufficiently rapid onset to induce water pressures high enough to force large volumes of water to ascend from a heavily over-deepened glacier basin. Many Quaternary tunnel channels ascend to ice margins from over-deepened basins (Clayton and others, 1999; Cutler and others, 2002; Jørgensen and Sandersen, 2006). Over-deepened basins may encourage tunnel channel formation as ascending subglacial meltwater will seek the most efficient route through highly erodible and complex glacier substrate. The presence of an over-deepened basin may also help retain meltwater within subglacial lakes (e.g. Shoemaker, 1992; Alley and others, 2006; Domack and others, 2006) thereby providing a source of water for release during tunnel channel forming bursts.

CONCLUSIONS AND WIDER IMPLICATIONS

For the first time at a contemporary glacial margin, we have demonstrated that glacier outburst floods are capable of generating tunnel channels. In our Icelandic example, tunnel channel routing is controlled by subglacial topography and rapid changes in subglacial and proglacial hydraulic gradients during the 1996 jökulhlaup. One cannot explain the location or trajectory of the tunnel channel discussed in this paper without recourse to transient ice-marginal hydraulic conditions during the 1996 jökulhlaup.
This paper demonstrates the need for greater attention to be paid to the interaction of proglacial lakes as a control on subglacial meltwater flow routing (see also Brennand, 2000). We suggest that the presence of proglacial lakes will increase the variability of geomorphologic response and sedimentary signature of glacier outburst floods over distances as little as a few hundred metres. Our study highlights the importance of meltwater outbursts as agents of tunnel channel formation and provides a valuable modern analogue for a process which has until now only been inferred from the Quaternary record. Further research is required to determine the origin of the lower Sæluhúsavatn basin which, being of composite origin, can be classified as a tunnel valley.

ACKNOWLEDGEMENTS

We acknowledge fieldwork grants from Earthwatch and the UK Natural Environment Research Council (GR3/10960, AJR). We thank Ragnar Frank Kristjánsson for supporting our research within Skátafell National Park and the July 2005 and April 2006 Earthwatch volunteers for field assistance. This manuscript was greatly improved by reviews from L. Clayton and T. Brennand as well as editorial comments by Guðfinna Aðalgeirsdóttir.

REFERENCES

