Visual observation on the natural snow surface shows that the phenomenon of blowing snow changes by an index \(P_b \). The phenomenon is related strongly to wind velocity \(V(\text{m/s}) \) and air temperature \(T(\text{oC}) \). The index was set up by way of experiment as follows:

\[
P_b = a V - b T.
\]

Where \(a(\text{s/m}) \) and \(b(\text{C}^{-1}) \) are the coefficients, and the author assumes \(a = b = 1 \). Then, the dimensionless equation \(P_b \) called "blowing snow index" is defined:

\[
P_b = V - T.
\]

The obtained \(P_b \) from those measurements have a wide range of fluctuations. Then, the coefficient \(a \) is estimated as follows:

\[
a = 0.011 \pm 0.014
\]

The phenomenon of blowing snow depended remarkably on wind velocity, air temperature, degrees of hardness of a snow surface and diameters of snow particles. Therefore, it seems that to describe the tendency of the phenomenon by only \(P_b \) is inadequate.

The obtained \(Q \)s are grouped in accordance with \(P_b \), namely, \(Q < 20 \text{ g/m.s} \) to \(74P_b <12 \), \(20 \text{ g/m.s} \) to \(12(P_b < 20 \text{ g/m.s} \) to \(12(P_b > 20 \text{ g/m.s} \). Figure 2 shows the distribution of \(Q \) as parametered by \(P_b \).

The attempts to describe the initiation condition of blowing snow and the blowing snow transport \(Q \) by the index \(P_b \) are studied. The effectiveness of \(P_b \) on blowing snow are summarized in the following: (1) On the condition \(P_b <7 \), the snow surface has no blowing snow, \(74P_b <12 \) and heavy blowing snow happens in \(12(P_b \). At the same places, the amount of blowing snow transport \(Q \) (g/m.s) was measured 367 times. Values of \(Q \) were measured using a box blowing snow gauge. Up to this time, \(Q \) had been written as follows:

\[
Q = 0.03 V^3
\]

Now, the author attempts to write as:

\[
Q = a P_b^3
\]

the mean values of \(Q = 16.4 \text{ g/m.s} \) and \(P_b = 12.1 \) were obtained from those measurements.