cone at the far end were standing on a completely elastic and finite material; in such a case the wave is completely reflected, and on returning to the top of the tube it causes the weight to move upwards. There is thus a very significant rebound, which can be calculated using the impulse law.

This is obviously not the case in practice. The rebound is very small even when the cone is resting on an ice layer, and is zero when the cone is in soft snow. The amount of energy lost is variable and unpredictable.

This fact has no important consequences if we use the Rammsonde qualitatively, but is most important if we use the Rammsonde resistance for quantitative studies, as does Bull. The only correct method of using a Rammsonde would seem to be:

1. to use W_2 instead of W_1 for the ram resistance,
2. to put a ring of soft material (rubber or lead?) at the point of impact to ensure that the blow is always inelastic.

The omission of the factor $R/(R+Q)$ in the first term of the ram resistance formula leads Bull to very high values of the frictional resistance. In fact, as Haefeli says: “by choosing the cone diameter slightly larger than the outside shaft diameter, the friction between shaft and snow can be practically disregarded”.

L. LLIBOUTRY

Université de Grenoble, Institut Fourier,
place Doyen-Gosse,
Grenoble, France
8 December 1956

REFERENCES

DUPLICATE PAPERS

A new list of duplicate papers in the Library of the Society available for distribution to members can now be obtained from the Editor. As this service is becoming increasingly popular early application is advisable.

GLACIOLOGICAL LITERATURE

This selected list of glaciological literature has been prepared by J. W. Glen with the assistance of T. H. Ellison, W. B. Harland, Miss D. M. Johnson, G. T. Warwick and the Staff of the Scott Polar Research Institute. Its field is the scientific study of snow and ice and of their effects on the earth; for the literature on polar expeditions, and also on the "applied" aspects of glaciology, such as snow ploughs, readers should consult the bibliographies in each issue of the Polar Record. For Russian material the system of transliteration used is that agreed by the U.S. Board on Geographic Names and the Permanent Committee on Geographical Names for British Official Use in 1947. Readers can greatly assist by sending reprints of their publications to the Society, or by informing Dr. Glen of publications of glaciological interest.

GENERAL GLACIOLOGY

GLACIOLOGICAL INSTRUMENTS AND METHODS

Millecamp, R. Sur l'application de la photogrammétrie terrestre à l'étude de la Mer de Glace. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (Paris), Tom. 242, No. 1, 1956, p. 159-61. [Description of photogrammetric method used to determine daily motions on the Mer de Glace.]
GLACIOLOGICAL LITERATURE

PHYSICS OF ICE

BASS, R., and MAGUN, S. Eiskristalle. Naturwissenschaften, Jahrgr. 43, H. 10, 1956, p. 213-17. [Discussion of molecular structure of ice crystals.]

JELLINEK, H. H. C., and BRILL, R. Viscoelastic properties of ice. Journal of Applied Physics, Vol. 27, No. 10, 1956, p. 1198-209. [Creep and recovery tests at small stresses on polycrystalline ice and single crystals from glaciers.]

MAGONO, C., and SEKIYA, S. The effect of an electric field on the growth of frost. Journal of the Faculty of Science, University of Tokyo, Ser. 2, Vol. 4, No. 6, 1955, p. 359-68. [Acceleration of growth of frost and development along line of force resulted from attraction of supercooled water droplets polarized by electric field.]

NIVEY, C. D. On the effect of speed on the kinetic friction of some plastic materials on ice. Canadian Journal of Physics, Vol. 34, No. 4, 1956, p. 362-69. [Effect of speed on drag values of samples 10 cm.2 loaded heavily. Results of author's experiments.]

Galloway, R. W. Études morphométriques de galets dans le Lyngsal (Norvège septentrionale). Revue de Glématologie Dynamique, An. 7°, Nos. 3-4, 1956, p. 53-56. [Comparison of stones from terraces with those in river bed enabled rough estimation to be made of former distance to glacier snout.]

Hjulström, F. and others. The Hoffellsandur—a glacial outwash plain, by F. Hjulström, Å. Sundborg, L. Arnборg, J. Jönnson. Part II. Chapters V-IX. Geographica Amnaler, Årg. 37, Ht. 3-4, 1955, p. 170-245. [Tillite in the basalt formation in east Iceland by J. Jönnson; meteorological observations by Å. Sundborg; hydrology of the glacial river Austurfjót by L. Arnborg; ice-marginal lakes at Hoffellsjökull by L. Arnborg; on the formation of frontal glacial plains by J. Jönnson; the ground water by F. Hjulström.]

Höwmann, J. Beiträge zum Problem der saale-eiszeitlichen Eissandlager in der Lüneburger Heide. Abhandlungen der Bremerischen Wissenschaftlichen Gesellschaft, Bd. 8, 1956, p. 37-44. [Study of moraines and outwash plains in the Lüneburger Heide leads to clarification of the "Wartthe Stadium" as part of the Riss or Saale glaciation.]

English summary.

Tanner, William F. North-south asymmetry of the Pleistocene ice sheet. Science, Vol. 122, No. 3171, 1955, p. 642-43. [Meteorological considerations suggest that the Laurentide Ice Sheet was thickest near its southern edge.]

Frost action on rocks and soil. Frozen ground. Permafrost

Dylin, L. Etude des glaciers dans le Lyngsdal (Norvege septentrionale). Biuletyn Peryglacja/ny [Periglacial Bulletin], Nr. 3, 1956, p. 193-314. [Description of periglacial deposits and landforms in Poland. Maps show locations of specific features, extent to which periglacial structures are responsible for landform, and nature of deposits.]

Furrer, R. Die Strukturformen der Alpen. Geographica Helvetica, 10, Nr. 4, 1955, p. 193-213. [Description of various types of patterned ground in Switzerland.]

Jahn, A. Some periglacial problems in Poland. Biuletyn Peryglacja/ny [Periglacial Bulletin], Nr. 4, 1956, p. 169-83. [Discussion of kinds of structures developed by frost action on superficial deposits in Poland, and connected with problems of corrosion.]
Meteoro logical and climatological glaciology

FETERS, P. J. The need for detailed information on the characteristics of hailstones. *Weather*, Vol. 11, No. 4, 1956, p. 107-09. [Request for information on duration of storms giving large hail, size and quantity of stones, etc.]

HANDEL, L. Beiträge zur Klimaforschung in der Dachstein-Rieseneishöhle. *Die Höhle*, Jahrg. 7, H. 1, 1956, p. 32. [climate studies in this ice cave.]

Snow

L'vovich, M. I. Parnikovyy effekt pri snegotyanii [Hothouse effect when snow melts]. *Izvestiya Vsesoyuznogo Geograficheskogo Obschestva* [News of the All-Union Geographical Society], Tom 88, Vyp. 6, 1956, p. 526-32. [Study of ablation of snow by solar radiation in negative air temperatures.]

Magono, C., and Oguchi, H. Classification of snow flakes and their structures. *Science Reports of the Yokohama National University*, Sect. 1, No. 4, 1955, p. 47-57. [Classification of snow flakes according to changes during fall, shape during fall and crystal type.]

WÜRSCHMIDT, E. Resultados de un viaje a la cuenca de la Laguna Verde (Tinogato-Catamarca). 2. Aspecto de los depósitos de nieve. *Universidad Nacional de Cuyo, Actas de la XV Semana de Geografía* (San Juan, Mendoza, San Luis, Argentina), 1951, p. 50-60. [Description of névé and penitentes of high snow patches in mountains near Chilean border.]