VAUGHAN LEWIS was one of the original members of the British Glaciological Society and one of its most active supporters. The loss the Society has sustained as a result of his untimely death in a road accident in Iowa is very severe indeed. To readers of this Journal it will have come as a great shock, the more so because, as an active glaciologist his work had become internationally known. For the grandeur of the mountains, of the ice they bear and the streams they nourish, is for us all to study. Alps, Himalayas and Rockies alike stand aloof for those to seek their secrets who have some of that combination of physical vigour, enthusiasm and liking for straightforward accomplishment with which Vaughan Lewis himself was in full measure endowed. With it he possessed a warmth of personality that endeared him to a very wide circle. To all he listened, and to all he gave.

Vaughan Lewis came of that able stock lying towards the eastern marches of Wales which has contributed so much to our professional intelligentsia; on both sides he had close associations with the countryside that bore him. The present writer has a happy memory of spending a few days with him on a farm belonging to a relative, nine hundred feet above the sea. From there, with clear gaze he could watch the work of rain and rivers; below, there lay the coast; behind, the hills rose to the Brecon Beacons where lie the corries and the moraines that tell the tale of the ice. All around, the generous growth of south-eastern Wales adorning the firm skeleton of the land gave background to his character.

Fair and athletic, he came to Cambridge from Pontypridd County Grammar School in 1926; entering at Gonville and Caius College he read for the Mathematical Tripos. His true capacity however became revealed when, under the admirable Cambridge system, having passed Part I he turned elsewhere. He took a “first” in both parts of the Geographical Tripos. He was also first reserve for the relay races against Oxford. Little wonder that he became such a keen observer of the agencies moulding the landscape before him, and an admirable exponent of the strenuous pursuit of knowledge in the field. Under Professor Debenham, the study of every aspect of physical geography was developing, and Lewis was at once appointed, after graduation in 1929, to a Student Demonstratorship in the Geography Department in which he continued to serve for 32 years.

He promptly took up the study of coastal evolution and his first paper appeared in the Geographical Journal in 1931, on the effect of wave incidence on the configuration of shingle beaches. This led to a paper on the formation of Dungeness. He emphasized the importance of constructive and destructive waves, rather than tidal currents. In “The evolution of shore-line curves” he discussed the effects of prevalent and dominant waves before the Geologists’ Association.

In 1935 he went to Iceland. Work on the Vatnajökull convinced him not only of the extraordinary amount of melt water present, but also of the need to extend Willard Johnson’s earlier bergschlund hypothesis.

His Icelandic field studies, extended by further journeys in 1938 and to Norway in 1939, led to a variety of papers on dirt cones, on snow-patch erosion and on miniature spits; the last he wrote up from some earlier field notes, in a short respite from wartime effort in 1943.

His conscience, his phenomenal physical energy and his willingness to undertake any task found full outlet during the war. With a much diminished staff and every kind of demand from the Services, the Department was under heavy pressure. Lewis, for example, conducted a survey course that provided 900 officers of the Royal Engineers with their initial training. When a hundred men at a time were out plane-tabling in a snowstorm his energy after a night on duty as an officer in the Home Guard was truly marvellous; and it was a returned warrior who gasped “I only hope I’m as fit when I’m 41.” But twenty-nine hours’ lecturing and
WILLIAM VAUGHAN LEWIS
demonstrating weekly, plus Home Guard, plus his never-forgotten solicitude for any undergraduate in difficulty and, always in the background, his care for his family and for the Unitarian Church of which he was a prominent member took their toll. Six months’ leave, during which he was at last persuaded to rest, did much good.

In 1947 he organized a very memorable student party to Jotunheimen. This introduced a series of post-war Cambridge studies of glacier behaviour. Several younger research workers advanced the study under his example, and their work is now summarized in Norwegian cirque glaciers, 1960, which he appropriately edited. Of his work on Austerdalsbreen and his subsequent interest in pressure-release as an active element in glacial erosion others will write; his many papers in this Journal and the very active part he played in this Society bear witness to his liveliness of mind. One notable result of the 1947 venture should be mentioned, namely the very suggestive rotational-slip hypothesis which he first elaborated in 1949 in his contribution to the Ahlmann Volume of Geografiska Annaler. He began to consider pressure-release, resulting from variations in the ice load with consequent freeze-thaw action as a possible element in the evolution of valley steps, a subject which has given rise to much controversy for half a century.

But these by no means complete the tale of his contributions to physical geography. River grading had attracted his attention, and a short field trip to Derbyshire in war-time led to some interesting papers. Still another interest of his lay in percolation studies, deriving from the characteristic zest with which he took up such problems as the gentle Cambridgeshire countryside provides. The dry valleys at Pegsdon, just over the Hertfordshire boundary, were the subject of one of his latest contributions.

Lewis devoted much attention to a problem that besets all physical geographers who are tied to a University during term—how to study process in the laboratory. The present writer recalls a variety of damp but enthusiastic efforts with the wave tank and with a variety of substances. It was characteristic that he devised a kaolin model glacier which, to his great pleasure, he was invited to demonstrate at a Royal Society’s conversazione. It was always his hope that the contribution that the geographer can make through exploratory reconnaissance and measurement of processes at work in the field would receive their acknowledgement from other exponents of the physical sciences. His success in so doing was, in this writer’s opinion, one of his major contributions. Recognition of his work, in the award of a Fellowship by Trinity College, gave him and indeed all his colleagues the utmost pleasure. Quite apart from his contribution to science, his good judgement of men and his unsparing effort in the heavy work of a College tutor were highly appreciated.

From the more personal standpoint, rarely can there have been a more stimulating University teacher in his chosen field; suffice it to mention the long roll of his former students scattered through the universities of the world. There will be many who will recall that typically pure enunciation, not loud, but on account of its clarity pleasantly audible throughout the Department whenever he was lecturing. He was persuasive rather than dogmatic; and his contribution lay rather in the number of suggestive hypotheses, a product of a fertile, exploratory and observant mind, that he put forward. The work of water in all its forms, in the rivers, the ice and the sea, even underground, attracted him; fluidity of concept and readiness to modify in the light of later discoveries were characteristic. Glaciologists in particular will recall his contributions with pleasure, and with the greatest regret at the loss of a cheerful and generous-minded colleague in a land which he had long and eagerly looked forward to visit. To his wife and family, the sympathy of a very wide circle of his scientific associates who had met him or knew of his work will be expressed.

GORDON MANLEY

Outside Cambridge and the very large family circle of graduates and students who have worked with Vaughan Lewis on Vest-Skautbreen and Austerdalsbreen in Norway during the