A COUPLED MARINE ICE-STREAM – ICE-SHELF MODEL

By ISABELLE MUSZYNSKI and G.E. BIRCHFIELD

(Department of Geological Sciences, Northwestern University, Evanston, Illinois 60201, U.S.A.)

ABSTRACT. Evidence as to the potential roles of marine ice flows in the dramatic climatological changes which have occurred from the late Pleistocene to the present is reviewed, indicating the need for careful modeling studies to evaluate several crucial hypotheses. A scale analysis of the flow of a marine ice stream coupled to a freely floating ice shelf is presented, in two dimensions and ignoring thermodynamic effects. With these limitations, the most important control of the dynamics of the ice stream is associated with first-order buoyancy effects related to the density contrast \(\rho_i/\rho_o \) between ice and sea-water. It is shown that longitudinal stretching, arising from large gradients in basal sliding velocity, dominates shearing deformation provided the aspect ratio \(w^2/2 \rho_p/\rho_o \). The buoyancy control is established through the necessity of having continuously varying longitudinal strain-rates in the neighborhood of the grounding line.

The scale analysis is the basis for derivation of a simplified model of a fast-flowing ice stream coupled to a freely floating ice shelf. The distance in the ice stream upstream from the grounding line over which the above density contrast \(\rho_i/\rho_o \) between ice and sea-water is important to clarify the dynamical differences between terrestrial and marine ice sheets in trying to explain the past.

Starting with Weertman's (1974) analysis of the stability of the junction of a marine ice sheet and an ice shelf and Thomas's (1977) zero-dimensional model for the grounding-line retreat rate of a marine ice stream, several studies have addressed the question of marine ice-sheet and ice-stream dynamics. We have developed a much simplified but dynamically consistent model for a two-dimensional coupled marine ice-stream-ice-shelf system. Stresses and velocities are determined explicitly in terms of the ice thickness; ice-thickness profiles are obtained numerically. Numerical results will be published in a forthcoming paper (paper in preparation by I. Muszynski and G.E. Birchfield).

A discussion of potential roles of marine ice sheets in the climate changes of the late Pleistocene follows in the next section. A qualitative picture contrasting dominant physical processes in marine ice streams and terrestrial ice sheets is followed by presentation of the simplified model that explicitly incorporates dominant processes appropriate for marine ice streams (with details of derivation delegated to Appendix A). Discussion of the coupled ice-stream-ice-shelf model follows with conclusions.

CLIMATOLOGICAL ROLE OF ICE SHEETS

Large polar ice masses, whether terrestrial or marine, interact with the mean climatic state in a variety of ways. For the Earth as a whole, a balance exists on long timescales between the absorption of incoming shortwave solar radiation and the emission of longwave radiation back to space. The amount of solar energy absorbed depends on the planetary albedo. The planetary albedo is a function of the surface albedo of the Earth, the atmospheric concentrations of aerosols, and the characteristics of the cloud cover. The pioneering energy-balance modeling experiments of Budyko (1969) and Sellers (1969) raised the possibility of an ice-covered Earth catastrophe due to the dependence of the surface albedo on temperature and thus on ice-sheet extent, and spurred intensive investigation of global climate sensitivity to this albedo-temperature feedback mechanism. Extensive discussions of the ice-albedo feedback and of climate sensitivity can be found in Schneider and Dickinson (1974), North and others (1981), and Dickinson (1985).

Another important feedback mechanism involves the dependence of the longwave flux on the surface temperature of the ice sheet; the temperature itself is a complicated function of the lapse rate, the surface elevation of the ice sheet, the accumulation rate at the surface of the ice sheet, and the rate of isostatic adjustment of the bedrock under the ice load (Oerlemans, 1980; Bowman, 1982; Pollard, 1982; Birchfield and Grumbine, 1985; Muszynski and Birchfield, 1985). The zonal radiation budget is unbalanced, with a net excess of energy at low latitudes and a net deficit at high latitudes. The resulting meridional thermal gradient is the main driving force of the atmospheric and oceanic circulations. A high-latitude cooling due to growth of the ice cover will intensify the Equator to pole temperature gradient and will be counteracted by an increased poleward flux of latent and sensible heat (Schneider and Dickinson, 1974; Saltzman and others, 1982). A complex but potentially
very important feed-back concerns the effects of ice-sheet topography and extent on the zonal atmospheric circulation. Disturbances in the planetary wave structure and winds resulting from a temperature-inversion layer over the ice sheet would both result in the Equatorward advection of cold air (Schwerdtfeger, 1970; Hartmann, 1984). Not only would these cold air masses enhance the albedo feed-back by helping preserve winter snow cover on land but they would also increase the land-ocean temperature contrast and through increased land ice-ice interactions and cyclone tracks and precipitation patterns (Ruddiman and McIntyre, 1981[a]; Hartmann, 1984; Manabe and Broccoli, 1985[b]). Other feed-back mechanisms are related to the temperature dependence of ice rheology (Glen, 1955): as its temperature rises, ice softens and strain-rates increase. Down-draw of the ice-sheet interior results (Hughes, 1981) and the lapse-rate feed-back causes a further rise in temperature at the surface of the ice sheet. Higher air temperatures will also lead to higher surface melt rates. This melt water percolates into crevasses and either refreezes inside the ice column or reaches the bed. The latent heat released upon refreezing of the melt water will soften the ice and compound the effect of the temperature increase (Hughes, 1986). An increase in the amount of basal water will result in a higher sliding velocity at the bed through increased basal melting of the ice sheet (Thomas and Bentley, 1978). Through non-linear positive feed-back mechanisms, a small initial perturbation will result in a run-away process in which the initial small displacement of the ground line is amplified until the marine ice sheet completely collapses or extends to the edge of the continental shelf (Thomas, 1979[b]). If the bedrock depth increases inland from the grounding line, a rise in sea-level, for example, may lift a part of the ice stream free of its bed and effectively float the marginal zone of the ice stream, causing the grounding line to retreat inland to a region of greater ice thicknesses. Because of the strong dependence of the creep rate at the grounding line on ice thickness (Weertman, 1957), ice discharge at the grounding line will increase, resulting in down-draw of the ice-sheet surface in the drainage basin of the ice stream, a decrease in basal shear stress, and thus an acceleration of the collapse of the marine ice sheet (Hughes, 1975, 1981). These are all positive feed-back mechanisms that can cause a run-away process in which the initial small displacement of the grounding line is amplified until the marine ice sheet completely collapses or extends to the edge of the continental shelf (Thomas, 1979[b]). These positive feed-back mechanisms may be associated with the fast response time of surface conditions associated with a snow and ice cover, such as the amount of summer melt water. Bentley (1984) estimated that the potential instability of the grounding line of a marine ice sheet leads to a decrease in its response time by about an order of magnitude, from thousands to hundreds of years. The reaction of the West Antarctic ice sheet, which today's only truly marine ice sheet, to a CO₂-induced climatic warming therefore is the cause of great concern among the glaciological and climatological communities; unfortunately, there is as yet no clear consensus as to the likelihood of its collapse or the time-scale over which such a collapse would take place (see, for example, Mercer, 1978; National Research Council, 1985).

Climatic variability on time-scales of 10-400 ka is thought to be associated with the astronomical theory (e.g. Saltzman, 1983). The astronomical or Milankovitch theory postulates that the small insolation fluctuations due to the quasi-periodic changes in the obliquity of the Earth's axis and in the eccentricity and longitude of perihelion of its orbit can be amplified sufficiently by internal feed-back mechanisms to cause the Pleistocene succession of glacial and interglacial episodes observed in the paleoclimatic record (e.g. Imbrie and Imbrie, 1979; Imbrie, 1985). The main spectral power of orbital variations occurs near periods of 413, 100, and 54 ka for eccentricity; 41 ka for obliquity; and 23 and 19 ka for precession. The 'response of the West Antarctic ice sheet to a CO₂-induced climatic warming therefore is the cause of great concern among the glaciological and climatological communities; unfortunately, there is as yet no clear consensus as to the likelihood of its collapse or the time-scale over which such a collapse would take place (see, for example, Mercer, 1978; National Research Council, 1985).
Hyde, 1984; Pollard, 1984; Birchfield and Grumbine, 1985). Although they clearly show the correlation between ice-volume changes and Northern Hemisphere insolation fluctuations, and do produce simulated ice-volume curves that resemble those deduced from the oxygen stable-isotope record, their spectral power at 100 ka is still somewhat less than is seen in the proxy record. A common characteristic of these modeling studies is that they consider the interaction between a single, Northern Hemisphere continental ice sheet and the insolation forcing. They are thus inadequate to explore the role of Southern Hemisphere ice sheets, in particular the Antarctic ice sheet, in the Pleistocene ice ages.

The so-called Milankovitch paradox concerns interhemispheric interactions. While the insolation anomalies associated with the obliquity are symmetric between the hemispheres, those associated with the precession of perihelion are anti-symmetric. Global circulation-model studies indicate that, perhaps because it is largely oceanic, the Southern Hemisphere is hardly affected by the presence of large Northern Hemisphere ice sheets (Manabe and Broccoli, 1983[11]). Detailed studies of ice-extent markers, however, indicate that mountain-glacier fluctuations in both hemispheres were nearly synchronous (Mercer, 1984), and foraminiferal evidence suggests that sea-surface temperature changes in the sub-Antarctic slightly pre-date the ice-volume changes associated with the demise of the large Northern Hemisphere ice sheets (Hays and others, 1976). Moreover, glacial terminations are slightly more abrupt in the Southern than in the Northern Hemisphere (Birch, 1984). How, then, are deglaciations driven? Part of the answer probably lies in the existence, in the climate system, of one or more fast mechanisms able to transform Northern Hemisphere insolation fluctuations into world-wide temperature changes. In the last few years, attention has been increasingly focused on the role of the deep ocean, more particularly the cross-equatorial heat flux and the effect of high-latitude deep convection on bottom-water production and atmospheric CO₂ concentration (Boyle and Keeling, 1982). Birchfield and Thorne, 1984; Enneveer and McIntyre, 1985; Manabe and Broccoli, 1985[12]; Toggweiler and Sarmiento, 1985; Wenz and Siegenthaler, 1985). Further important clues were furnished by Ruddiman and McIntyre (1981[12]), who found evidence that the last glacial Northern Hemisphere ice sheets may have substantially decreased in volume before shrinking in area, thereby raising the possibility that down-draw effects in the drainage basins of marine components (Stuiver and others, 1981) played a critical role, and by Denton and Hughes (1983), who asserted that at the last glacial maximum, a critical part of the large Northern Hemisphere ice sheets may have become marine because of isostatic adjustment under the ice load. They proposed that summer melting of Northern Hemisphere terrestrial ice-sheet margins, caused by a favorable orbital configuration, leads to a change in its ice-lake level, in turn, due to feedback mechanisms that amplify the initial marginal melting and ultimately lead to total collapse of the ice sheets. To summarize, then, there is considerable evidence that marine ice sheets may be critical cryospheric components on short, as well as long, time-scales of climatic variability.

A MARINE ICE-STREAM MODEL

Marine ice-stream physics, a qualitative model

The flow regime of an ice mass is largely determined by conditions at the ice-bedrock interface. A terrestrial ice sheet, which is not attached to the bed, is supported by gravity and the drag force exerted by the bedrock on the ice; the resulting normal stress field is therefore essentially isotropic, that is, the normal deviatoric stresses are small compared with the shear stress. The longitudinal strain-rate or stretching is then negligible compared with the shear strain-rate and movement will be by shearing only. Equating the normal stresses to the glaciostatic pressure, it is then possible to obtain the shear stress by balancing the gravitationally induced driving stress and the basal shear stress acting along the ice-bedrock interface. The velocity, in turn, follows from the rheology by integration of the shear strain-rate.

If the ice is not frozen to the bed, but basal conditions are such that the sliding velocity and its down-stream gradient are small, the response is the same except for the addition of a bottom-sliding component to the velocity field. As Hutter (1981) has shown, the shear-stress increase (due to pressure-melting of the basal ice, for example), its down-stream gradient may be comparable in magnitude to the shear strain-rate and stretching may no longer be negligible compared with shearing. In a surging glacier, for example, the sliding velocity is in the same magnitude of order as the stretching becomes the dominant deformation process (e.g. McMeeking and Johnson, 1986 and references therein). Corrections to the frozen-bed solution under these circumstances have been obtained by asymptotic methods (Hutter, 1981; Shoemaker and Morland, 1984; McMeeking and Johnson, 1985).

For a marine ice stream with attached freely floating ice shelf, strain heating, inland seepage of sea-water, and subglacial buoyancy effects associated with the marine character of the ice stream all contribute to establishing a strong gradient in basal sliding velocity between the head of the ice stream and its grounding line. As Hutter (1981) has shown, the shear strain-rate may be small, that stretching becomes the dominant deformation process in the ice stream is longitudinal stretching. We shall assume that the predominance of stretching over shearing is a distinguishing property of marine ice streams. Since, in the floating ice shelf, shear strain is negligible, that stretching becomes the dominant deformation process in the ice stream is longitudinal stretching. We shall assume that the predominance of stretching over shearing is a distinguishing property of marine ice streams. Since, in the floating ice shelf, shear strain is negligible, that stretching becomes the dominant deformation process in the ice stream is longitudinal stretching. We shall assume that the predominance of stretching over shearing is a distinguishing property of marine ice streams. Since, in the floating ice shelf, shear strain is negligible, that stretching becomes the dominant deformation process in the ice stream is longitudinal stretching.

It is through this coupling that the basal-sliding control of the ice stream affects the flow of the ice shelf and, vice versa, that changes in the dynamic state of the ice shelf, e.g., through grounding or ungrounding, affect the dynamics of the ice stream. The up-stream limit of this domain of influence of the ice shelf on the ice stream is estimated in the discussion. A further feed-back mechanism that may be important in this coupling is also discussed there.

Marine ice-stream physics, a scaled model

As the dynamics of a laterally unbounded ice shelf are well understood (Weertman, 1957; Thomas, 1973), we limit our discussion to the marine ice-stream domain. We present the full, unsimplified system of equations and boundary conditions; this is followed by a simple, but fundamental scaling analysis which substantiates the discussion in the previous section and provides the basis for our coupled model. The simplified ice-stream model is then presented, with details relegated to Appendix A. To demonstrate overall dynamical consistency of the coupled model, a scale analysis of the freely floating ice shelf is presented in Appendix B.

Consider a Cartesian coordinate system with x horizontal along the longitudinal axis and y along the vertical axis, as illustrated in Figure I. The y-axis denotes the up-stream limit of the ice-stream flow regime and is assumed fixed in space and time. The ice shelf extends from the grounding line, at x = x*, to x = L. For simplicity, we assume that the ice stream rests on a rigid bed and that the bedrock profile is linear with slope β = 0. The bedrock depth is zero at x = 0. In both ice sheet and ice shelf, h is the ice-surface elevation and H the total ice thickness. In the ice sheet, h is the bedrock depth, h = Φx, while in the ice shelf, h is the depth to the bottom ice surface. Thus, H = h + h. The surface slope of the ice sheet is dh/dx = -α (α > 0), the bottom slope dh/βx = β. If ρw is the density of sea-water, ρi the density of ice (both assumed constant), and ρ = ρw - ρi, hydrostatic equilibrium in the ice shelf requires that

\[\frac{\partial h}{\partial x} = -\frac{\rho_i}{\rho} \alpha, \]

\[\frac{\partial h}{\partial y} = \frac{\partial^2 h}{\partial x^2} = 0. \]
The bottom ice surface is thus known everywhere. The values of h', h, and H at the grounding line are h'*, $h*$, and $H*$. and S is sea-level.

Basic equations. We denote normal stresses by σ_{ij}, shear stresses by $\tau_{ij} = \sigma_{ij} - \delta_{ij} \sigma$, and strain-rates by $\dot{e}_{ij};$ the longitudinal velocity is u and the vertical velocity v. The dynamic and kinematic state of both an ice sheet and an ice shelf are described by the set of equations

\begin{align}
\frac{\partial H}{\partial t} + \frac{\partial}{\partial x}(Hu) &= a - b, \\
\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xx}}{\partial y} &= 0, \\
\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} &= \rho_t g, \\
\sigma'_{xx} &= \xi(\sigma_{xx} - \sigma_{yy}), \\
\sigma'_{yy} &= -\sigma_{xx} - \sigma_{yy}, \\
\tau^2 &= \xi(\sigma^2 + \sigma_{yy}^2) + \sigma_{xy}^2, \\
\xi_{xx} &= \frac{\partial u}{\partial x} = A \tau^2 \sigma_{xx}, \\
\xi_{yy} &= \frac{\partial v}{\partial y} = A \tau^2 \sigma_{yy}, \\
\xi_{xy} &= \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) = A \tau^2 \sigma_{xy},
\end{align}

with, for the marine ice stream, boundary conditions

at $y = -h$:

\begin{align}
- u \sin \phi - v \cos \phi &= 0, \\
- \cos \phi \sin \phi &= F'(\sigma_{xx} \sin 2\phi + \sigma_{xy} \cos 2\phi)^m,
\end{align}

at $x = 0$:

\begin{align}
H &= H_0. \\
M &= M_0. \\
\sigma_{xx} &= \tau_0.
\end{align}

at $x = x^*$:

\begin{align}
\frac{\partial \rho}{\partial x} H' &= \rho_w g \sin \phi \left(\frac{\partial \rho}{\partial x} \right) , \\
\sigma_{xx} &= \tau^*.
\end{align}

and, for the ice shelf at $y = h'$:

\begin{align}
\sigma_{xx} \sin \alpha + \sigma_{xy} \cos \alpha &= 0, \\
\sigma_{xy} \sin \alpha + \sigma_{yy} \cos \alpha &= 0, \\
v &= \frac{\partial h'}{\partial t} + u \frac{\partial h'}{\partial x} - a,
\end{align}

at $x = L$,

\begin{align}
\int_{-h}^{h'} \sigma_{xx} dy &= \rho_w g \int_{-h}^{h'} y dy.
\end{align}

Equation (1) is a vertically integrated statement of mass continuity for an incompressible material; $a - b$ is the net accumulation rate, equal to net surface accumulation minus bottom melting (in meters of ice equivalent/year). Equations (2) are stress equilibrium equations, with g the vertical acceleration due to gravity. Equations (3) define the deviatoric stresses as being deviations from isotropy in the normal stress field, while Equation (4) defines the effective stress in terms of the deviatoric and shear stresses. Equations (5) constitute a statement of ice rheology and relate the stress and strain-rate fields. We have adopted a non-linear power-law rheology with exponent equal to three; the flow-law parameter A is assumed constant. Equations (6.1-2), (10.1-2), and (11.1-2) are stress-continuity conditions at the ice-air and ice-water interfaces (atmospheric pressure is assumed to be zero); Equations (6.3), (10.3), and (11.3) are kinematic conditions describing
the location of the free surfaces. Equation (7.1) states that there is no penetration of ice into the bedrock, and Equation (7.2) is the conventional sliding law relating basal velocity and basal shear stress. F' is an empirical function of (x,t), and m a constant exponent, both discussed below. The boundary conditions at the origin (Equations (8)) and at the grounding line (Equations (9)) state that the ice thickness and the normal component of the stress vector are continuous at the junctions of the ice stream with the ice sheet at $x = 0$, and with the ice shelf at $x = x^t$. Because the ice shelf is afloat everywhere, boundary condition (9.1) is also a flotation condition on the ice stream at the grounding line. Equation (12) expresses that the mass flux is continuous across the ice-stream-ice-shelf transition, and Equation (13) is an integrated stress continuity condition at the ice-shelf front.

For small α and ϕ, $\sin(\alpha,\phi) = \tan(\alpha,\phi) = \frac{\partial}{\partial x} (h^t, h)$, $\cos(\alpha,\phi) \approx 1$ and $\tan 2 \phi \approx 2 \tan \phi$. Boundary conditions (6) and (7) can therefore be rewritten more simply as

\[- \sigma_{xx} \frac{\partial h^t}{\partial x} + \sigma_{xy} = 0, \quad (6' .1)\]
\[- \sigma_{xy} \frac{\partial h^t}{\partial x} + \sigma_{yy} = 0, \quad (6' .2)\]

\[u = F \left[2 \sigma_{xx} \frac{\partial h^t}{\partial x} + \sigma_{xy} \right]^m \quad (7')\]

where $F = F' \cos \phi \cos^m 2 \phi$ and Equation (7.1) has been used to eliminate the vertical velocity v from Equation (7.2).

Fundamental scale analysis. The traditional way to reduce the above equations in the case of a terrestrial ice sheet is to neglect the normal strain-rate equations (Equations (5.1-2)) and to retain only the shear strain-rate equation (Equation (5.3)). As pointed out above, this is not appropriate for a marine ice stream, as it implies isotropy of the normal stress field and dominance of shearing over stretching. We first note that the down-stream aspect ratio, i.e. the ratio of ice thickness, H^t, to length, L^c, denoted by ω, of most large ice bodies is small, $\omega^2 \approx 10^{-2} - 10^{-3}$. Because of the dominance of gravity in the vertical, typical normal stresses in such bodies are $\sigma_{zz} \approx \rho g H^t$. Furthermore, as seen from Equation (2.1), the ratio of shear stress to normal stress must be of the order of the aspect ratio ω^2. For the rapidly flowing ice stream in the neighborhood of the grounding line, we assert that the normal deviatoric stress therefore dominates the shear stress and the longitudinal strain-rate in the ice shelf is of order $\omega^2 \ll \frac{\rho g}{\rho_w}$. Finally, with this coupling constraint on U_c, the ratio of shear stress to deviatoric stress in the ice stream becomes

\[\sigma_{xy} = \omega^2 \left(\frac{\rho g}{\rho_c} \right)^{-1} \quad (10)\]

\[\sigma_{xx} \ll \omega^2 \left(\frac{\rho g}{\rho_c} \right)^{-1} \quad (11)\]

so that the condition for dominance of stretching over shearing in the ice stream reduces to the same condition as in the ice shelf, $\omega^2 \ll \frac{\rho g}{\rho_w}$. We now consider the relationship

\[\frac{\partial H}{\partial x} = \frac{\partial}{\partial x} (Hu) = a - b, \quad (14)\]

\[\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} = 0, \quad (15.1)\]

\[\sigma_{yy} = - \rho g (H - y), \quad (15.2)\]

\[\frac{\partial \sigma_{xx}}{\partial x} - \frac{\partial \sigma_{xy}}{\partial y} = 0, \quad (16.1)\]

\[\frac{\partial \sigma_{xx}}{\partial x} = 0, \quad (16.2)\]

This system is integrated, using Equations (6) and (7'), to give the final form for marine ice-stream model:

\[\frac{\partial H}{\partial t} + \frac{\partial}{\partial x} (Hu) = a - b \quad (17)\]

\[\sigma_{xx} = (\rho g)^{3/2} A \frac{1}{3} \frac{\partial}{\partial x} \left[H \frac{\partial H}{\partial x} \right]^{1/3} \quad (18)\]
\[\sigma_{xx} = -\rho g h^2 \frac{\partial h}{\partial x} + 2\sigma'_{xx} \quad (19) \]
\[\sigma_{xy} = -\rho g h^2 \frac{\partial h}{\partial x} + \frac{3}{2} \frac{\partial}{\partial x}(h^2 - y) \sigma'_{xx} \quad (20) \]

\[u = \left[-\rho g h \frac{\partial h}{\partial x} \right]^{-1} \left[\frac{3}{2} \frac{\partial}{\partial x}(h^2 - y) \sigma'_{xx} \right] \quad (21) \]

with boundary conditions (8) and (9) unchanged by the scale analysis.

The vertical normal stress in an ice shelf, whether bounded or not, is equal to the glacial overburden (Weertman, 1957; Thomas, 1973; Equation (B28)) and thus has the same functional expression as the vertical normal stress in the marine ice stream (Equation (15.2)). Equation (3.1) then shows that, at the grounding line, the continuity condition on the normal stress (Equation (9.2)) can be replaced by a continuity condition on the deviatoric stress. In a freely floating ice shelf, the deviatoric stress is

\[\sigma'_{xx} = \frac{1}{2} \frac{\partial p}{\partial x} \rho_w \quad (9.2') \]

where \(\sigma'_{xx} \) is a function of the dynamic state of the ice shelf.

DISCUSSION AND CONCLUSIONS

We have shown that the most important control of the dynamics of a fast-moving ice stream coupled to a freely floating ice shelf is associated with first-order buoyancy effects, that is, longitudinal stretching dominates shearing deformation in both the ice shelf and the ice stream provided the aspect ratio \(\frac{t}{h} \ll \frac{\partial p}{\partial x} \rho_w \). This constraint is the basis for our simplified ice-stream model consisting of the three coupled differential Equations (17), (18), and (21) with boundary conditions (8), (9.1), and (9.2'). Given initial and boundary conditions, the model predicts time and spatial changes of ice thickness, longitudinal velocity, and deviatoric stress. Auxiliary diagnostic relations (19) and (20) provide the normal and shear stresses.

The domain up-stream of the grounding line over which this dynamic regime extends can be estimated from the ratio of shear stress to deviatoric stress; the magnitude of the former is estimated here explicitly in terms of the free surface slope \(\alpha \) from Equation (20),

\[\frac{\sigma_{xy}}{\sigma_{xx}} = \frac{\rho g H c}{L_c} \left[\frac{H c}{L_c} \right]^{1/3} \approx \frac{\omega}{(\rho c)}^{-1/3} \quad (22) \]

Solving for \(L_c \), we have

\[L_c \approx \left(\frac{\partial p}{\partial x} \rho_w \right)^{-3/4} \left[\frac{U_c A_c}{H c} \right]^{1/4} \rho_g h^3 \quad (23) \]

Since the distance up-stream from the grounding line over which the ratio of shearing to stretching remains small varies as the 4th power of the ratio of basal sliding velocity to flow-law constant, it is fairly insensitive to changes in \(U_c \) and \(A_c \). For \(A_c = 1 \times 10^{17} \text{ m}^2 \), \(U_c = 200 \text{ m a}^{-1} \), and \(\omega = 5 \times 10^{-3} \), \(L_c \approx 150 \text{ km} \).

Our knowledge of conditions at the base of ice streams is still limited. It does seem likely, however, that, largely as a result of strain heating and geothermal heat flux, the basal ice of most West Antarctic ice streams is at the pressure melting-point (Gow and others, 1968; Rose, 1979) and that an extensive basal water layer is present (Weertman and Birchfield, 1982). Under these conditions, the effective bed roughness is decreased and separation of the basal ice by cavity formation on the lee side of obstacles and subglacial buoyancy effects is favored, and high sliding velocities are to be expected (e.g. Paterson, 1981, chapter 7; Bindschadler, 1983). The sliding law \(u = FT_b \) incorporates both flow around bed protruberances by creep deformation and regelation through the basal shear stress term \(T_b \), and subglacial water effects through the function \(F \). Theoretical considerations and modeling studies indicate that \(F(\rho, H) \approx 1 \) m (Weertman, 1957; Fowler, 1981; Budd and others, 1984; McInnes and Budd, 1984) and that \(F \) is an inverse function of the ice thickness above buoyancy,

\[H = \frac{\rho w}{\rho I} (h + S) \quad (24) \]

(Bindschadler, 1983; Budd and others, 1984; McInnes and Budd, 1984). The role of \(F \) in the dynamics of the ice stream is seen by estimating \(U_c \) in Equation (23) from

\[U_c \approx F_c \left(\frac{\rho g H c}{A_c} \right)^{1/4} \quad (25) \]

for \(m \approx 3 \). The distance over which the ice-stream flow regime can be maintained increases with basal lubrication \(F \); the relative importance of shearing versus the sliding-induced stretching increases as \(A \) increases, i.e. as the ice becomes softer. In the present model, \(A \) should be regarded as a vertically averaged rheological constant. Inclusion of the temperature dependence of \(A \) in the model would give rise to a differential softening of the ice in the basal layer compared to that in the near-surface layer (e.g. Hutter, 1983, chapter 3) and thus to a thermally induced shearing. Due to the large increase in creep-activation energy at temperatures approaching the melting point (Weertman, 1973), and to the relatively temperate surface conditions prevalent near the edges of a major polar ice sheet such as in Antarctica, this effect may be relatively insignificantly compared to the large ice-shell-induced stretching.

Using Equations (18) and (20), the basal shear stress in our model,

\[\tau_b = 2\sigma'_{xx} \frac{\partial h}{\partial x} + \sigma_{xy} \quad (26) \]

is found to be

\[\tau_b = \rho g h \frac{\partial h}{\partial x} + \frac{3}{2} \frac{\partial}{\partial x}(h^2 - y) \sigma'_{xx} \quad (27) \]

where \(\tau_b = \rho g h \alpha \) is the "classical" basal shear stress that exactly balances the gravitational driving stress and

\[\tau_m = \frac{3}{2} \frac{\partial}{\partial x}(H c x) \quad (28) \]

is a buoyancy correction to \(\tau_b \).

Since \(\sigma'_{xx} \) contains a second derivative of the surface elevation, \(\tau_m \) contains a third derivative. Because of the correction \(\tau_m \) the total basal shear stress \(\tau_b \) will now be a function not only of local conditions but also of conditions at some distance up-stream and down-stream (Budd, 1975; McMeeking and Johnson 1985). Further significance of \(\tau_m \) becomes clear if we look at the strain-rate, \(\dot{e}_{xx} \), which from Equation (18), can be approximated by \(\dot{e}_{xx} \approx \frac{\sigma'_{xx}}{\rho g h^3} \). Thus,

\[\tau_m \approx 2 \frac{1/3}{\partial x} \left(H c x \right)^{1/3} \quad (29) \]

From Equation (21), the velocity in terms of \(\tau_c \) and \(\tau_m \) is

\[u = F(\tau_c m + m \tau_c m - \tau_m) \approx F(\tau_c + \tau_m') \quad (30) \]

and hence,

\[u = F \left[-\rho g H \frac{\partial h}{\partial x} + 2.4 \left(\frac{\partial}{\partial x} \left[H \left(\frac{\partial h}{\partial x} \right)^{1/3} \right] \right) \right] \quad (31) \]
It is now apparent that T_m introduces an internal feedback between down-stream changes in longitudinal strain-rate, ice thickness, and basal velocity. This feedback is positive if

$$\frac{\partial \varepsilon_{xx}}{\partial x} > \frac{3}{4} \frac{\partial H}{H} \frac{\partial \varepsilon_{xx}}{\partial x}.$$

The buoyancy basal shear stress T_m thus provides a mechanism whereby the ice-stream profile and sliding shelf into which the ice stream discharges. In the absence that imposed at the grounding line by the ocean or the ice surface slope is small, and T_m is positive. If the back-pressure exerted by the ice shelf increases, the ice-shelf strain-rate at the grounding line decreases and may even become negative, and there will be a region up-stream of the grounding line in which the negative feedback associated with a negative T_m contributes in decreasing the sliding velocity and strain-rate in the ice stream to the ground-line value. It is important to realize, however, that as the back-pressure changes, both F and T_m will also be affected; this discussion is meant only to highlight the qualitative role of T_m in adjusting the ice-stream sliding velocity to conditions at the grounding line. The detailed mechanism of this adjustment is explored fully in the numerical model (paper in preparation by I. Musynski and G.E. Birchfield).

Previously published marine ice-sheet models (Thomas, 1977; Thomas and Bentley, 1978; Hughes, 1981; Suiver and others, 1981; Young, 1981; Oerlemans, 1982[b]; Budd and others, 1984; Fastook, 1984, 1985; Lingle, 1984; McInnes and Budd, 1984; Lingle and Clark, 1985; van der Veen, unpublished) have used the "classical" sliding law $u = F_T m$ with F_T derived either from theoretical considerations of the sliding process or by fitting to field data. The basal shear stress in these models is thus a function of local conditions only, and any change in back-pressure will act on the sliding velocity through the resulting changes in ice-stream thickness and surface slope only. Inclusion of T_m not only ensures dynamical self-consistency but provides an explicit feedback mechanism that links changes in back-pressure directly to changes in the ice-stream strain-rate.

Field measurements show that the surface curvature of ice streams is positive, i.e. concave up (e.g. Hughes, 1975, fig. 6; Rose, 1979, fig. 1). This was attributed by Hughes (1975) to partial uncoupling of the base of the ice stream from its bed in the presence of large amounts of basal melt water. The stress-continuity requirement at the grounding line (Equation (9.2))) can be rewritten as an expression for the surface curvature on the ice-stream side of the grounding line by substitution of Equation (18):

$$- \frac{1}{\alpha} \frac{\partial \alpha}{\partial x} = \frac{A_T^*}{m F_T} + \frac{1}{m F} \frac{\partial \varepsilon_{xx}}{\partial x}.$$

The term involving the down-stream gradient of F stresses the importance of subglacial water-pressure effects in maintaining positive ice-stream surface curvatures.

ACKNOWLEDGEMENTS

Part of this work was completed while the authors were visiting the Institute of Oceanographic Sciences, Wormley, England; the second author was on a Guggenheim Fellowship at the time of this visit and gratefully acknowledges the support thereby received. Part of this work was extended to the Scott Polar Research Institute, University of Cambridge, for the use of their library. The figure was drafted by C. Cheverton. The authors are indebted to two anonymous reviewers whose comments resulted in considerable improvements to the present manuscript. This research was supported by grant ATM8306251 from the Climate Dynamics Section, U.S. National Science Foundation.

REFERENCES

APPENDIX A

SCALE ANALYSIS

We use the approach of asymptotic analysis (Morland and Johnson, 1980, 1982; Hutter, 1981, 1983; Johnson, 1981; Shoemaker and Morland, 1984; McMeeking and Johnson, 1985) to develop a greatly simplified but dynamically consistent ice-stream–ice-shelf model based on the scale analysis in the text. The basic system of equations is non-dimensionalized with a set of characteristic scales Xc such that the non-dimensional form of a variable X is given by \(\hat{X} = X/X_c \). Since the ice stream is coupled to an ice shelf, it is natural to choose values typical of the grounding line region for the Xc. The physical dimensions of the ice stream are scaled by the length over which the ice-stream flow regime extends, Lc, and by a characteristic grounding-line thickness, Hc:

\[x = Lc \hat{x} \quad y = Hc \hat{y} \]

Let

\[(\hat{h}, \hat{h}, \hat{h}, \hat{S}) = Hc (\hat{h}, \hat{h}, \hat{H}, \hat{S}) \quad (x^*, L) = Lc (x^*, L^*) \]

\[(\hat{u}, \hat{v}) = \hat{A} (\hat{u}, \hat{v}, \hat{S}) \quad (a, b) = wUc (a, b) \]

\[\frac{\hat{c}}{\hat{c}} = \frac{\hat{c}}{\hat{c}} \quad F = Fc \]

We scale all stresses with

\[\rho g \]

Since the empirical function F in the basal sliding law is the ratio of the velocity to a power of the basal shear stress, we scale F as the ratio of these two quantities,

\[Fc = \frac{Uc}{\omega m_{\rho c} m} \]

The characteristic strain-rate in the ice shelf is

\[\dot{\epsilon} = \dot{\epsilon}c \left[\frac{\partial \rho}{\partial \rho} \right]^3 \]

From continuity, the characteristic velocity for the ice stream is then

\[Uc = A \rho Lc \left[\frac{\partial \rho}{\partial \rho} \right] \]

Substituting for all dimensional variables in terms of characteristic quantities and non-dimensional variables, we obtain the following system of equations and boundary conditions:

\[\frac{\partial \hat{h}}{\partial \hat{t}} + \frac{\partial \hat{h}}{\partial \hat{x}} + \hat{H} u = \hat{a} - \hat{b} \]

\[\frac{\partial \hat{c}_{xx}}{\partial \hat{x}} + \frac{\partial \hat{c}_{xy}}{\partial \hat{y}} = 0 \]
with boundary conditions

at $\hat{y} = \hat{h}$:

$$-\omega^2 \hat{a}_{x x} \frac{\partial \hat{h}'}{\partial x} + \hat{a}_{x y} = 0,$$

(A6.1)

$$-\omega^2 \hat{a}_{x y} \frac{\partial \hat{h}'}{\partial x} + \hat{a}_{y y} = 0,$$

(A6.2)

$$\frac{\hat{v}}{\omega^2} = \frac{\hat{h}'}{\hat{\alpha}^2} + \hat{u} \frac{\partial \hat{h}'}{\partial x} - \hat{\alpha},$$

(A6.3)

at $\hat{x} = 0$:

$$\hat{H} = \hat{H}_{00},$$

(A8.1)

$$\hat{\alpha} = \hat{\alpha}_{00},$$

(A8.2)

at $\hat{x} = \hat{x}^*$:

$$\frac{\delta H}{\rho w} \hat{x}^* = \hat{h}^* - \hat{\beta},$$

(A9.1)

$$\hat{a}_{x x} = \hat{\beta}^*.$$

(A9.2)

As shown in the text, for predominance of stretching over shearing, $\omega^2 \ll \delta p/\rho w$, the latter ratio being a constant of our problem. For all ice streams of interest to us, the relationship $\omega \approx \delta p/\rho w \ll 10^{-1}$ is valid and will be used to simplify the scale analysis.

Based on the analysis in the text, we now incorporate explicit statements as to the relative magnitudes of normal, shear, and deviatoric stresses and of normal and shear strain-rates into the equations by expanding all dependent variables in n-term asymptotic series of the form

$$\chi = \sum_{m=0}^{m=n-1} \omega^m \chi_m + O(\omega^n)$$

(see Nayfeh, 1973) where the O symbol means that the error, T, committed by truncating the series after $m = (n-1)$ terms is such that

$$\lim_{\omega \to 0} \frac{T}{\omega^n} < \infty.$$
\[\hat{\phi}_{xy} = - (\hat{\phi}_{0} - \hat{\gamma}) \frac{\partial \hat{\phi}_{i}}{\partial x}, \]
(A17)

\[\hat{u}_{0} = \hat{R}_{0} \left[\frac{\partial \hat{\phi}_{i}}{\partial x} \right]^{m}, \]
(A18)

\[\hat{\phi}_{xx} = \frac{1}{2^{1/3}} \left[\frac{\partial \hat{R}_{0}}{\partial x} \left(\frac{\partial \hat{\phi}_{i}}{\partial x} \right) \right]^{1/3}. \]
(A19)

Equations (A16)-(A19), with (A10), constitute the zero-order solution. The first-order system is then

\[\frac{\partial \hat{\phi}_{1}}{\partial x} + \frac{\partial \hat{R}_{0}}{\partial x} \left(\hat{R}_{1} \hat{u}_{1} + \hat{R}_{0} \hat{u}_{0} \right) = 0, \]
(A20)

\[\frac{\partial \hat{\phi}_{xx}}{\partial x} - \frac{\partial \hat{\phi}_{xy}}{\partial y} = 0, \]
(A21.1)

\[\frac{\partial \hat{\phi}_{yx}}{\partial y} = 0, \]
(A21.2)

\[\hat{\phi}_{xx} - \hat{\phi}_{yy} = 2 \hat{\phi}_{xx_{1}}, \]
(A22)

\[\frac{\partial \hat{\phi}_{i}}{\partial y} = 0 \]
(A23)

with boundary conditions

at \(\hat{y} = \hat{h}_{0} \):

\[- \hat{\phi}_{xx_{1}} + \frac{\partial \hat{\phi}_{i}}{\partial x} = 0, \]
(A24.1)

\[\hat{\phi}_{xy_{1}} = \hat{h}_{1} = 0, \]
(A24.2)

at \(\hat{y} = -\hat{h}_{0} \):

\[\hat{u}_{1} = \hat{\phi}_{xy_{2}} m^{-1} \left(\hat{\phi}_{xy_{2}} + m \hat{R}_{0} \left(\frac{\partial \hat{\phi}_{i}}{\partial x} \right) \right), \]
(A25)

The solution of this system is again straightforward:

\[\hat{\phi}_{xy_{1}} = -\hat{h}_{1}, \]
(A26)

\[\hat{\phi}_{xx_{1}} = 2 \hat{\phi}_{xx_{1}} - \hat{h}_{1}, \]
(A27)

\[\hat{\phi}_{xy_{2}} = \frac{2}{\partial x} \left(\hat{R}_{0} \hat{\gamma} \right) \hat{\phi}_{xx_{1}}, \]
(A28)

\[\hat{u}_{1} = \hat{\phi}_{xy_{2}} m^{-1} \left(\hat{R}_{0} \hat{\gamma} \right) \hat{\phi}_{xx_{1}} + m \hat{R}_{0} \left(\frac{\partial \hat{\phi}_{i}}{\partial x} \right) \hat{\phi}_{xx_{1}} - \hat{R}_{1} \hat{\gamma} \left(\frac{\partial \hat{\phi}_{i}}{\partial x} \right) \]
(A29)

Adding the zero- and first-order solutions, we can write the non-dimensional equations to \(O(\omega^{2}) \) as

\[\frac{\partial \hat{\phi}}{\partial \hat{u}} + \frac{\partial \hat{R}_{0}}{\partial \hat{x}} (\hat{R}_{0} \hat{u}) - (\hat{a} - \hat{b}) = O(\omega^{2}) \]
(A30)

Finally, applying the transformation \(X = X_{v} \hat{\phi} \), we obtain the dimensional form of the model equations, Equations (17)-(21), which, together with boundary conditions (8) and (9), describe the marine ice-stream flow to \(O(\omega^{2}) \).

APPENDIX B

A SCALED ICE-SHELF MODEL

Scale analysis

We first perform the coordinate translation \(\xi = x, \eta = y - S \). The upper ice surface is now given by \(\hat{h}' = h' - S \), the lower ice surface by \(\hat{h} = h + S \). The ratio \(\frac{\Delta p}{\Delta p_{i}} = 10^{-1} \) is a physical constant of the problem and relates the ice thicknesses above and below sea-level, \(\hat{h}' = \Delta p / \Delta p_{i} \). Non-dimensionalization proceeds as for the ice stream, with the characteristic length scale now being representative of the length of the ice shelf. For all ice shelves of interest, the relationship \(\omega \in \Delta p / \Delta p_{i} \) is valid and is used to simplify the analysis.

The dependent variables are next expanded in \(n \)-term asymptotic series in \(\omega \). The expansions for the stresses and velocities are identical to those for the marine ice stream. The ice thicknesses are expanded as

\[\hat{h}_{1} = \omega \hat{h}_{1} + \omega^{2} \hat{h}_{2} + O(\omega^{3}). \]
(B1.1)

The top and bottom boundary conditions and the integral over the ice thickness in the boundary condition at the front of the ice shelf (Equation (13)) are then expanded in Taylor series about \(\hat{h}_{0} = 0 \) and \(\hat{h}_{0} = -\hat{h}_{0} \). We now separately solve the zero- and first-order sub-systems. The continuity equation, which is not amenable to an analytical solution, and the boundary conditions at the grounding line (Equation (12)) will be added later to close the dimensional form of the ice-shelf equations.

Scaled equations

The zero-order system consists of the equations

\[\frac{\partial \hat{\phi}_{i}}{\partial x} = 0, \]
(B2.1)

\[\frac{\partial \hat{\phi}_{i}}{\partial \hat{n}} = 1, \]
(B2.2)

\[\hat{\phi}_{i} = \hat{n}_{0}, \]
(B3)

with boundary conditions
at \(\hat{n} = 0 \):
\[
\hat{\omega}_{\hat{n} \hat{n}} = 0,
\]
(B4)

at \(\hat{n} = -\hat{h}_0 \):
\[
\hat{\omega}_{\hat{t} \hat{n}} = -\hat{h}_0, \quad \hat{\omega}_{\hat{n} \hat{n}} = -\hat{h}_0
\]
(B5.1)

(B5.2)

at \(\hat{t} = \hat{L} \):
\[
\int_{-\hat{h}_0}^{0} \hat{\omega}_{\hat{t} \hat{t}} d\hat{n} = -i\hat{h}_0^2.
\]
(B6)

The solution to this zero-order system is
\[
\hat{\omega}_{\hat{t} \hat{t}} \hat{y}_0 = \hat{\omega}_{\hat{n} \hat{n}} \hat{y}_0 - \hat{n}.
\]
(B7)

The first-order system is given by the equations
\[
\frac{\partial \hat{\omega}_{\hat{t} \hat{t}}}{\partial \hat{t}} + \frac{\partial \hat{\omega}_{\hat{n} \hat{n}}}{\partial \hat{n}} = 0,
\]
(B8.1)

\[
\frac{\partial \hat{\omega}_{\hat{n} \hat{n}}}{\partial \hat{n}} = 0,
\]
(B8.2)

\[
\hat{\omega}_{\hat{t} \hat{t}} = \hat{n}(\hat{\omega}_{\hat{t} \hat{t}} - \hat{\omega}_{\hat{n} \hat{n}}),
\]
(B9)

\[
\frac{\partial \hat{u}_0}{\partial \hat{t}} = \hat{n}^{\frac{1}{2}} \hat{x}
\]
(B10.1)

\[
\frac{\partial \hat{n}_1}{\partial \hat{n}} = 0
\]
(B10.2)

with boundary conditions
at \(\hat{n} = 0 \):
\[
\hat{\omega}_{\hat{t} \hat{n}} = 0,
\]
(B11.1)

\[
\hat{\omega}_{\hat{n} \hat{n}} + \hat{h}_1 = 0,
\]
(B11.2)

at \(\hat{n} = -\hat{h}_0 \):
\[
-\hat{\omega}_{\hat{t} \hat{t}} \frac{\partial \hat{h}_0}{\partial \hat{t}} - \hat{\omega}_{\hat{n} \hat{n}} = -\hat{h}_0 \frac{\partial \hat{h}_0}{\partial \hat{t}},
\]
(B12.1)

\[
\hat{\omega}_{\hat{n} \hat{n}} = -\hat{h}_0
\]
(B12.2)

at \(\hat{t} = \hat{L} \):
\[
\int_{-\hat{h}_0}^{0} \hat{\omega}_{\hat{t} \hat{t}} d\hat{n} = -i\hat{h}_0^2.
\]
(B13)

From Equations (B8.2) and (B11.2),
\[
\hat{\omega}_{\hat{n} \hat{n}} = -\hat{h}_1
\]
(B14)

and, from Equation (B12.2),
\[
\hat{h}_1 = \hat{h}_0
\]
(B15)

Equations (B8.2), (B9), (B10.1), and (B10.2) show that \(\hat{\omega}_{\hat{t} \hat{t}} \) is independent of \(\hat{n} \). Integrating Equation (B8.1) over \(\hat{n} \) from \(\hat{n} = -\hat{h}_0 \) to \(\hat{n} = 0 \) and applying boundary conditions (B11.1) and (B12.1), we find that
\[
\hat{\omega}_{\hat{t} \hat{t}} = -i\hat{h}_1
\]
(B16)

so that the deviatoric stress (Equation (9)) is
\[
\hat{\sigma}_{\hat{t} \hat{t}} = \hat{n} \hat{h}_1
\]
(B17)

The velocity is obtained by integration of Equation (10.1)
\[
\hat{u}_0 = \hat{u}^* + \frac{2}{64} \frac{\hat{h}_1}{\hat{t}^3} \hat{u}^*.
\]
(B18)

The shear stress, finally, follows from Equations (8.1) and (11.1)
\[
\hat{\sigma}_{\hat{t} \hat{t}} = \hat{n} \hat{h}_1
\]
(B19)

The complete solution to order \(\omega^2 \) is thus
\[
\hat{h}_0^2 = \omega_0 + O(\omega^3),
\]
(B20)

\[
\hat{\omega}_{\hat{t} \hat{t}} = \hat{n} \hat{h}_1 + O(\omega^3),
\]
(B21)

\[
\hat{\sigma}_{\hat{t} \hat{t}} = \hat{n} \hat{h}_1 + O(\omega^3),
\]
(B22)

\[
\hat{\omega}_{\hat{n} \hat{n}} = \hat{n} \hat{h}_1 + O(\omega^3),
\]
(B23)

\[
\hat{\omega}_{\hat{t} \hat{t}} = \hat{n} \hat{h}_1 + O(\omega^3),
\]
(B24)

\[
\hat{\omega}_{\hat{n} \hat{n}} = \hat{n} \hat{h}_1 + O(\omega^3),
\]
(B25)

In the original \(x,y \) coordinate system, the dimensional form of the ice-shelf equations is then, to order \(\omega^3 \),
\[
\frac{\partial H}{\partial t} + \frac{\partial}{\partial x} (H \hat{u}) = a - b,
\]
(B26)

\[
\sigma_{xx} = -\rho g \left[\frac{1}{2} \frac{\partial \rho}{\rho} H - y \right],
\]
(B27)

\[
\sigma_{yy} = -\rho g \left[H - y \right],
\]
(B28)

\[
\sigma_{xy} = \frac{1}{2} \rho g \left[\frac{\partial \rho}{\rho} H - y \right]
\]
(B29)
Muszynski and Birchfield: Coupled marine ice-stream–ice-shelf model

\(\sigma'_{XX} = \frac{1}{4} \rho_1 g \frac{\Delta \rho}{\rho_w} H_x \) \hspace{1cm} (B30)

\[u = u^* + A \left(\frac{1}{4} \rho_1 g \frac{\Delta \rho}{\rho_w} \right)^{1/2} \int_{x^*}^{x} H^2 dx \] \hspace{1cm} (B31)

with, at \(x = x^* \), boundary condition (12) on mass-flux continuity. Aside from environmental factors, the dynamical state of the ice shelf is controlled by the dominance of stretching over shearing assured by \(\omega^2 \ll \Delta \rho/\rho_w \), by the position of the grounding line, the discharge rate from the inland ice at the grounding line, and of course by the calving physics at the ice-shelf front.

MS. received 28 April 1986 and in revised form 24 September 1986